简介:摘要 : 植被分类是高光谱影像分类中的特定应用问题,光谱特征和空间特征是植被分类中常用的两类特征,比较这两类特征的性能,对实际植被分类应用中选择合适的特征类型或两者的有效结合具有指导意义。用主成分分析( PCA)提取光谱特征时,常选择前几个主成分( PCs)作为光谱特征,虽然它们包含较大的信息量但并不能保证较高的类别可分性和分类正确率,针对这一问题本研究提出了一种混合特征提取方法,对高光谱影像在 PCA的基础上用改进的基于分散矩阵的特征选择方法选出具有较高类别可分性的 PCs用于后续分类。利用一景 AVIRIS高光谱植被影像,从分类精度的角度,首先比较了所提出的混合特征提取方法和原始 PCA、独立主成分分析( ICA)及线性判别分析( LDA) 3种常用子空间特征提取方法在高光谱影像植被分类中的性能。试验结果表明所提出的混合特征提取方法在研究中数据集 1和 2上均获得了最高的总体分类正确率,分别为 82.7%和 86.5%。与原始 PCA相比,本研究提出的混合特征提取方法的总体分类正确率,在数据集 1和 2上分别提高了 1.5%和 2.5%。由此阐明了所提出的混合特征提取方法在高光谱植被分类中的有效性。对光谱特征和空间特征在高光谱影像植被分类性能的比较中,总体上空间特征获得的分类正确率比光谱特征高,特别是 Gabor特征,在两个数据集上均获得了最高的总体分类正确率分别为 95.5%和 96.7%。由此表明空间特征较光谱特征在高光谱影像植被分类中更具优势。本研究结果为后续改进空 -谱特征方法及其两者有效结合,进一步提高植被分类正确率提供了参考。
简介:摘要 : 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络( CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡( DSEB)的事件驱动分簇路由算法。算法包括:( 1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;( 2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点 -主网关节点两种情况;( 3)基于频谱变化和通信服务质量( QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发 CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设 sink为中心),即在网关或簇头节点选取计算式中引入与节点到 sink的距离成正比的权重系数。算法仿真结果表明,与采用 K-medoid分簇和能量感知的事件驱动分簇 (ERP)路由方案相比,在 CRSN节点数为定值的前提下,基于 DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。
简介:摘要 : 受经济和气候驱动,长江经济带水田空间格局发生了显著变化,影响区域粮食安全与生态安全。本研究基于 1990-2015年土地利用遥感监测数据,利用 GIS的空间分析功能,探究长江经济带水田空间格局动态变化特征,采用当量因子法计算生态系统服务价值( ESV),分析了水田变化的综合影响。结果表明: 1) 1990-2015年长江经济带水田规模持续缩减,共减少了 17390km2,减幅呈增长态势具有显著地域差异,长江中上游与下游的水田减幅相差约为 9.56%。其中下游减幅较大,水田占区域比例随之降低,中上游恰好相反。 2)由于经济建设及水产养殖的发展,水田主要转化为建设用地和水系,水田主要由水系、旱地和湿地等转化而来。长江三角洲城市群、长江中游及成渝城市群的水田变化最为剧烈,建设用地侵占水田扩张的现象分布广泛,水田转为水系主要在两湖平原局部地区。 3)水田与其他生态系统的转化对 ESV是正影响,水田转为水系对此贡献最大,其转化规模决定了不同时期 ESV净增量的大小,水系转化为水田损失的价值最多,建设用地侵占水田次之。不同市域的水田变化情况不一致,因此 ESV增减情况具有明显差异。 4)生态系统服务中水文调节、水资源供给增强的同时,食物生产、气体调节受到严重损害,与水资源规模扩大和水田资源大量流失有直接关系。研究结果有助于揭示长江流域水田的时空变化过程及其对各项生态系统服务的影响,可为区域土地利用规划、农业政策与生态可持续发展提供理论支持。
简介:[目的/意义]冷链配送碳排放动态预测是企业碳排放精准评估及其绿色信用等级评定的重要依据.本研究面向车辆碳排放受路况信息、行驶特征、制冷参数等多因素影响,提出一种融合多源信息的冷藏车辆碳排放动态预测模型.[方法]基于道路车辆数量与像素面积占比表征路况信息,构建基于改进YOLOv8s的路况信息识别模型,并以路况信息、行驶特征(速度、加速度)、货物重量、制冷参数(温度、功率)等为输入,构建基于改进iTransformer的冷藏车辆碳排放动态预测模型.最后与其他模型展开对比分析,分别验证路况信息识别与车辆碳排放动态预测的精度.[结果]改进的YOLOv8s路况信息识别模型在精确率、召回率和平均识别精度上分别达到98.1%、95.5%和 98.4%,比YOLOv8s分别提高了 1.2%、3.7%和 0.2%,参数量和运算量分别减少了 12.5%和31.4%,检测速度提高了5.4%.改进的iTransformer...
简介:[目的/意义]牛的体尺参数是反映牛身体发育状况的关键指标,也是牛选育过程的关键因素.为解决规模化肉牛牧场复杂环境对肉牛体尺的测量需求,设计了一种图像采集装置以及体尺自动测量算法.[方法]首先搭建肉牛行走通道,当肉牛通过通道后进入限制装置,用英特尔双目深度相机D455对牛只右侧图像进行RGB与深度图的采集.其次,为避免复杂环境背景的影响,提出一种改进后的实例分割网络Mask2former来对牛只二维图进行前景轮廓提取,对轮廓进行区间划分,利用计算曲率分析方法找到所需体尺测点.然后,将原始深度图转换为点云数据,对点云进行点云滤波、分割和深度图牛只区域的空值填充,以保留牛体区域的点云完整,从而找到所需测点并返回到二维数据中.最后,将二维像素点投影到三维点云中,利用相机参数计算出投影点的世界坐标,从而进行体尺的自动化计算,最终提取肉牛体高、十...
简介:摘要 : 水肥一体化自动装备的使用能够有效提高水肥资源利用率,但需要在作业前获知作物的营养状况及水肥需求量,而通过人工手持测量仪器来获取这些信息,存在着时效性差和劳动强度大等缺点。针对以上问题,本研究以常见的作物玉米为研究对象,使用大疆精灵Ⅲ无人机携带 RedEdge-M多光谱相机在田间上空采集玉米多光谱图像,同时使用 YLS-D系列植株营养测定仪测量玉米植株的氮素和水分含量等营养信息,根据这些信息将采集的图像分为 3个等级(每个等级共包含 530幅五通道图像,其中 480幅作为训练集, 50幅作为验证集),提出了一种基于卷积神经网络的玉米作物营养状况识别方法。并基于 TensorFlow深度学习框架搭建了 ResNet18卷积神经网络模型,通过向模型输入彩色图像数据和五通道多光谱图像数据,分别训练出适合于彩色图像和多光谱图像的玉米植株营养状况等级识别模型。试验结果表明:训练后的模型能够识别玉米作物的彩色图像和多光谱图像,能够输出玉米的营养状况等级和 GPS 信息,识别彩色图像模型在验证集的正确率为 84.7%,识别多光谱图像模型在验证集的正确率为 90.5%,模型训练平均时间为 4.5h,五通道图像识别平均用时为 3.56s。该识别方法可快速无损地获取玉米作物的营养状况,为有效提高水肥资源利用率提供了方法和依据。
简介:[目的/意义]随着奶牛养殖业向规模化、精准化和信息化养殖迅速发展,对奶牛健康的监测和管理需求也日益增加.实时监测奶牛的反刍行为对于第一时间获取奶牛健康的相关信息以及预测奶牛疾病具有至关重要的意义.目前,针对奶牛反刍行为的监测已经提出了多种策略,包括基于视频监控、声音识别、传感器监测等方法,但是这些方法普遍存在实时性不足的问题.为了减轻数据传输的数量与云端计算量,实现对奶牛反刍行为的实时监测,基于边缘计算的思想提出了一种实时对奶牛反刍行为进行监测的方法.[方法]使用自主设计的边缘设备实时地采集并处理奶牛的六轴加速度信号,基于六轴数据提出了基于联邦式与拆分式边缘智能这两种不同的策略对奶牛反刍行为实时识别方法展开研究.在基于联邦式边缘智能的奶牛反刍行为实时识别方法研究中,通过协同注意力机制改进MobileNet v3网络提出了...
简介:摘要 : 目前,针对蜂群发生崩溃式消失的现象还缺乏有效的观测和分析手段。本研究在分析蜂群行为与检测特征的基础上,设计了一种基于物联网技术的蜂群多特征长期监测系统。该系统采用太阳能供电,融合了多种传感器,能够检测蜂群的多个特征(蜂箱内部的温度、湿度、蜂群重量、声音和蜜蜂的进出量),并利用无线数据同步传输技术将这些数据上传到远程云服务器中。基于该系统,本研究还进行了针对意大利蜜蜂从 2018年秋季到 2020年春季为期 235天的长期连续监测试验,记录了蜂群在秋衰期、越冬期和春繁期蜂箱内部温度、湿度、蜂群重量、声音和进出量的逐小时的细致变化。试验结果表明,在此期间,蜂箱内的平均温度呈现从 25℃下降到 -5℃再回升至 15℃的抛物线变化,相应的进出巢次数也由大约 8万次 /天减少至 0次 /天再增加至 5万次 /天。在越冬期中,蜂群的重量呈现出大约 25 g/天的线性下降趋势,同时蜂箱内也更为安静,声音的频率集中于 0~64 Hz。由此表明,在不干扰蜂群的情况下,该监测系统获得的特征数据能够有效地揭示蜂群的日常活动和趋势变化,可用来研究蜂群的行为生物学、探索崩溃式的蜂群消失成因以及发展精确化蜜蜂养殖业。
简介:摘要 : 针对温室番茄智能化管理需要,研究茎秆、叶片和绿果等 3类相近色目标的多波段图像融合方法,以凸显目标与背景亮度差异,提高目标视觉识别效率。根据其各自在 300~1000 nm范围的反射光谱特征差异,建立了针对其光谱数据分类的 Lasso正则化逻辑回归模型。基于模型的稀疏解特征,确定具有较大权值系数的 450、 600和 900 nm等 3个波段作为最优成像波段,在此基础上构建了温室番茄植株多波段图像在线采集系统。结合最优成像波段下相近色目标图像特征分析,提出了基于 NSGA-II的多波段图像加权融合方法,以增强特定目标与近色背景物体的图像亮度差异。最后通过现场试验对多波段图像融合效果进行评估。结果表明,分别以茎秆、叶片和绿果器官作为识别目标,通过多波段图像融合处理后,目标与背景之间的图像灰度差异绝对差值相应达到单波段图像的 2.02、 8.63和 7.89倍,即被识别目标与其他近色背景的亮度差异显著增强,且背景物的亮度波动得到抑制。本研究结果可以为农业环境近色目标视觉识别相关研究提供参考。
简介:摘要 : 太阳能杀虫灯物联网( SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着 SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了 SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络( WSNs)中的体现,并进一步对 WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的 WSNs故障诊断方法。此外,还探讨了 SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的 WSNs故障诊断调试工具,如 Sympathy、 Clairvoyant、 SNIF和 Dustminer。最后,强调了 SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于 SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。
简介:摘要 : 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于 WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度 GNSS定位系统前提下的作业面积的计算方法、 GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。
简介:摘要 : 为提高现有苹果目标检测模型在硬件资源受限制条件下的性能和适应性,实现在保持较高检测精度的同时,减轻模型计算量,降低检测耗时,减少模型计算和存储资源占用的目的,本研究通过改进轻量级的 MobileNetV3网络,结合关键点预测的目标检测网络( CenterNet),构建了用于苹果检测的轻量级无锚点深度学习网络模型( M-CenterNet),并通过与 CenterNet和单次多重检测器( Single Shot Multibox Detector, SSD)网络比较了模型的检测精度、模型容量和运行速度等方面的综合性能。对模型的测试结果表明,本研究模型的平均精度、误检率和漏检率分别为 88.9%、 10.9%和 5.8%;模型体积和帧率分别为 14.2MB和 8.1fps;在不同光照方向、不同远近距离、不同受遮挡程度和不同果实数量等条件下有较好的果实检测效果和适应能力。在检测精度相当的情况下,所提网络模型体积仅为 CenterNet网络的 1/4;相比于 SSD网络,所提网络模型的 AP提升了 3.9%,模型体积降低了 84.3%;本网络模型在 CPU环境中的运行速度比 CenterNet和 SSD网络提高了近 1倍。研究结果可为非结构环境下果园作业平台的轻量化果实目标检测模型研究提供新的思路。
简介:摘要 : 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数 R2均大于 0.999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了 0.1。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。
简介:[目的/意义]随着自动化、数智化技术的快速发展及其相关技术在肉牛养殖上的逐步推广利用,肉牛智能化养殖技术研究也取得了一定进步.肉牛的生理指标如运动量、体温、心率、呼吸频率,以及反刍量等变化反映了肉牛的健康或亚健康状态.基于多种传感器采集到的数据以及机器学习、数据挖掘及模型化分析等技术的利用,肉牛的生理指标可由智能感知装备尤其接触式设备自动获取并用于发情、产犊、健康和应激的监测.[进展]针对肉牛养殖过程生理指标的智能监测技术及其利用价值进行了系统分析,分析了生理指标监测技术在实际生产中的应用现状,总结了肉牛生理指标监测的难点和挑战,并提出了未来发展方向.[结论/展望]肉牛生理指标的智能监测与利用既提高数据采集的时效性和准确性,有利于提高一线人员工作效率,促进肉牛养殖的智能化水平及健康养殖水平.结合当前中国肉牛实际饲养..
简介:摘要 : 光是植物进行光合作用的主要能量来源,光照好坏直接影响作物的产量和品质。本研究针对现有植物补光系统多以功能叶光合能力为基准进行冠层补光,导致冠层新生叶光抑制、株间功能叶位补光不足以及补光位置不能适应作物生长进行动态调整的问题,以黄瓜为研究对象,设计了一种基于植株需光差异特性的设施黄瓜立体光环境智能调控系统。该系统由智能控制子系统、冠层 -株间 LED补光子系统、冠层 -株间环境监测子系统和补光灯升降子系统组成,通过 ZigBee技术实现各子系统间无线通信。其中冠层 -株间环境监测子系统分别获取冠层和株间环境信息并发送至智能控制子系统,智能控制子系统根据环境实时信息调用冠层调控模型和株间适宜叶位调控模型获得相应调控目标值,并将其下发至冠层 -株间补光灯,实现冠层与株间补光灯的动态实时调控。在陕西省泾阳县蔬菜产业综合服务区蔬菜基地分别部署立体补光设备和传统冠层补光设备,并进行系统调控效果验证试验。结果表明,立体补光区黄瓜植株的株高和茎粗显著增长,其中相比传统冠层补光区平均株高、茎粗分别增长了 8.03%和 7.24%,相比自然处理区平均株高、茎粗分别增长了 26.51%和 36.03%;在一个月的采摘期内,立体补光区相比传统冠层补光区和自然处理区产量分别提升了 0.28和 1.39 kg/m2,经济效益分别增加了 2.82和 4.88 CNY/m2,说明立体光环境调控系统能够提高经济效益,具有应用推广价值。